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Abstract. The non-linear N-wave resonance interaction system with both boson and fermion 
fields is studied in the framework of the quantum inverse scattering method. The model 
Hamiltonian is diagonalised and the degeneracy of the eigenstates and the existence of 
the quantum bound states are analysed. Moreover, the classical limit is also discussed. 

1. Introduction 

Recently Kulish [ 13 studied the quantum non-linear three-wave resonance interaction 
model in the framework of the quantum inverse scattering method (QISM) [2-41. The 
same model, but with a different choice of statistics proposed by Ohkuma and  Wadati 
[ 5 ] ,  has also been carried out by Wang and Pu [6]. On the other hand, the generalisation 
to the non-linear N-wave interaction system has been discussed by Kulish and  Reshetik- 
hin [7] for the algebraic Bethe ansatz equations on a finite interval of length L under 
periodic boundary conditions and  by Zhou and  Jiang [8] for the whole line (L-00)  
in the case of a finite number of excitations. I n  this paper we discuss the quantum 
integrability of the non-linear N-wave interaction system with both boson and fermion 
fields. Our model may be viewed as a direct generalisation of that proposed by Ohkuma 
and  Wadati [ 5 ] .  Here we wish to stress that all integrable cases for the non-linear 
N-wave interaction system have been contained in our treatment. 

The paper is organised as follows. In  $ 2 we present the model and  construct the 
commutation relations for the quantum scattering data operators by solving the so- 
called Yang-Baxter relations. In § 3 the eigenstates for an infinite number of conserva- 
tion laws in the model is constructued, and  the degeneracy of the eigenstates and the 
existence of the quantum bound states are analysed. In  § 4 the classical Yang-Baxter 
relations in the graded sense are presented, and then the classical limit is discussed. 
Our  conclusions are summarised in 5 5.  
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2. Commutation relations 

Our model is given by the Hamiltonian 

Here w ; ( x )  and w,,(x) are, respectively, creation and annihilation operators for boson 
or fermion fields, dependent on the corresponding parities being even or odd. Here 
and in the following, we always assign the parity of the field w , , ( x )  to be P ( i )  + P ( j ) ,  
and set P ( i ) = O  ( l s i < a  or p s i s ” )  and P ( i ) = l  ( ( r s i < p , a , P = 1 , 2 ,  . . . ,  N ) .  
Then, w s (  x )  and w:( x )  satisfy the usual equal-time (anti-)commutation relations 

As shown in the appendix, the equations of motion of the system can be cast into the 
Lax form. For our purpose, let us consider the auxiliary linear problem in Q I S M  in 
the form 

with 

where A is the spectral parameter and e,,,, is an  N x N matrix with elements (e , , ) , ,  = 
6,,6,,,,. In terms of parameters from (4), the group velocities U,, and the coupling 
constants E,,& in (1) can be expressed as 

with 

/ ; , = ( - l p c p , /  p,J  = a ,  - a,  = u , ~  - uJA. (6) 
In order to obtain the commutation relations for the quantum scattering data operators, 
we rewrite (3)  in a lattice form: 

TIT,  ( A  ) =: 9) ( A  ) 3/ ( A  ): 3 , ( A ) =  T(xJ,  x,lA) ( 7 )  
with 

Here A is the small lattice spacing and wlml = wI,(x,)A. In (8),  we have neglected the 
terms of order A?. Thus the Yang-Baxter relations take the form 

& ( A  - ~ L ) ( ~ , , ( A ) O ~ , , ( ~ C L ) ) = ( ~ ~ ( ~ L ) ~ ~ , ( A ) ) ~ ( A  - p ) .  (9) 
I \ 
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Here by 0 we mean the Grassmann direct product [9], which is defined by 
5 

It is easy to verify that the 9 matrix is given by 

(11) 

It is worthwhile noticing that the Hilbert space of quantum states of the system under 
consideration is the tensor product of N (  N - 1) /2  - ( N  - M )  M Fock spaces for boson 
fields and ( N  - M ) M  Fock spaces for fermion fields: 

H = @ H,l i , j = 1 , 2  , . . . ,  N 
I --I 

with the pseudovacuum being defined by w , ( x ) ( O )  = 0, i <j ,  i , j  = 1 , 2 , .  . . , N, and 
M = p - a. Here HI,( 1 G i < a S j < p or a 5 i < p G j G N) denote the Fock spaces for 
fermion fields and  the others for boson fields. Now we can calculate the expectation 
value of T f ( A )  0 T l ( p )  between the pseudovacuum IO): 

I 

When proceeding to the continuum limit, we introduce a normalised monodromy 
matrix which is determined by 

where 

Then the Yang-Baxter relations for Y(A) become 

where 

with 
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After a very tedious but straightforward algebraic calculation, we obtain 

with 

Here the S 

From this 

t7/m = sgn( at - a m  ? I , m = l , 2  ,..., N. 

function appears as a result of the formula 

eiLx 
lim -= iiS(x). 
L - x  x 

we immediately get the commutation relations for the scattering data 
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Here we have used the notation 
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( 2 0 )  

3. Conserved quantities, eigenstates and bound states 

Let us now discuss the scattering states for the model. From the Neumann series for 
dl and 913,,, we have 

410) = 10) %/mlo) = 0 l < m ; I , m = l , 2  , . . . ,  N.  ( 2 1 )  

The commutation relations between &/ and gmn show that the state 

is an eigenstate of all d 1 ( A )  and the corresponding eigenvalues a l ( A )  are determined 
by 

On the other hand, & , ( A )  are the generating functionals for an infinite number of 
conservation laws in the model. Note that, when A is very large, &, (A)  have the 
following asymptotic expansions: 

with 
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From this we can reconstruct the well known conserved quantities, i.e. charges, 
momentum and Hamiltonian: 

Expanding the eigenvalues a r ( A )  for & / ( A )  in terms of the inverse powers of A, we have 

t l  U /  
A A  

a / ( A )  = 1 +-+,+a 

1 - 1  ic / - I  5 1  N " I ,  

ul=(-l)'")ic ( e  A Y / ) -  2 A ~ ' ) + ~ f ~ + ( - l ) ' " ' - f I + i C  c (-l)'")f,. (29) 
1 = 1  k = l  1 = / + 1  k = l  2 1 = 1  

Comparing this with (24) and (28), we immediately get 

Thus, the state (22) is the common eigenstate for an infinite number of conservation 
laws in the model. 

To conclude this section, let us now discuss the degeneracy of the eigenstates and 
the existence of the quantum bound states. From (19), it follows that the states 
%l,I+2(A)10) and ~ ~ , ~ + l ( A ) ~ ~ + l , ~ + z ( A ) ~ O )  have the same eigenvalue for all the conserved 
quantities. Further, the same statement also holds for the states %/,,+,(A)lO), 

and so on. Generally, we can show that the states % , k ( A ) ) O )  and % l J ( A ) C e , k ( A ) l O )  are 
degenerate. This reflects the fact that the system ( 1 )  describes the decay resonance 
interaction represented by 

%, I+ 1 ( A  1 %+ I ,  / + 3  ( A 1 IO), %, / + A  A ) %+2,  /+A A ) 10) and %, I+ 1 ( A  ) %+ I ,  / + 2 (  A ) %+*. /+3(  A ) IO), 

w~~ + wjk e w i k .  

As for the existence of the quantum bound states, let us restrict ourselves to the case 
in which the fields wJN( j = 1,2, . . . , N - 1) are regarded as fermions. In this case, we 
find that 

(31) 
This implies that the fields wJN ( j  = 1 , 2 , .  . . , N - 1 )  cannot make bound states. On 
the other hand, the bound state of m""+"wl,/+, particles occurs when the corresponding 
spectral parameters form a string: 

%JN ( A  + ic) %,,(A) = 0 j = 1 , 2  ,..., N-1. 

A ( / , / + I )  - A (1 , /+1 '  - ic( m( I . / + l J  + 1 - 2k)/2 
k -  

(32) 
k = 1,2,  . . . , m"+"; Im A"*'+" = 0; 1 = 1,2,  . , . , N - 2 

and when the group velocities satisfy 

(u/,/+l - U / + l , k ) ( u / , / + l -  U / k ) > O  k = I + 2 ,  ..., N (33 )  
respectively. Indeed, if we put the system on a finite interval of length L, then the 
periodic boundary condition leads to 
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Here we have dropped the superscripts for convenience. I n  particular, in the two- 
particle case, we have 

Obviously, the condition for the complex parameters A to exist is A T  = A, .  Setting 
A ,  = A  + i ~  and  A ?  = A - i ~  ( K  > 0), and substituting into (35), we find that, when L 
goes to infinity, (35) requires P,,,+, > 0 if c = - 2 ~  < 0 or Pi,,+, < 0 if c = 2~ > 0. This 
implies that cP,,,+, < O .  Note that when E $  = - C P , , P , ~ P , ~  and P,, = u , ~  - v , ~  we immedi- 
ately get the conditions (33). It is interesting to note that the binding energy of the 
bound state is zero. This must be a consequence of the fact that the system is linear 
dispersive. When the conditions (33) are satisfied for all I ,  the bound states of the 
fields w , , , + , ( / =  1,2,. . . , N -2 )  coexist. I f  so, the bound states involving other fields 
also occur. This is obvious if we notice the degeneracy of the eigenstates discussed 
above. No doubt, it is interesting to compare our results with those of Ohkuma and  
Wadati [5]. Unfortunately, it is difficuit to rederive the Bethe eigenvectors constructed 
by them from the quantum inverse scattering method, although this can be done by 
using a generalisation of Wiesler’s method for the non-linear Schrodinger model [ lo ] .  
We shall return to this problem elsewhere along with a detailed study of the algebraic 
Bethe ansatz equations for the model (1). 

4. Classical limit 

Let us now come back to the classical theory. Then, the classical equations of motion 
of the system are determined by 

Kjr, = I wj, , W .  
Here the Poisson bracket is defined by 

where the functional derivatives are understood in the sense of Grassman algebras 
[ll]. As in the non-linear Schrodinger model, the classical 2 matrix takes the same 
form as (5),  and is then a supermatrix. Thus, the classical Yang-Baxter relations 
should also be understood in the graded sense: 

I z( X, A O T(Y,  I* ) 1 = [ r (  A - P 1, z( X, A 1 0 I + I O z( X, 13 6 ( x - ) (38) 
i 5 , 

or, in a lattice form, 

{ ~ , ( A ) O ~ ( C O } = [ ~ ( A - I * ) , ~ , ( A ) O  I I + I O ~ ’ , ( P ) I S , , .  (39) 
c c 

Here the Poisson brackets of Grassman direct product of two supermatrices SP and 93 
are defined by 
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In  our case, the r matrix is 

It is easy to check that the quasiclassical correspondence given by Izergin and  Korepin 
[I21 

also holds in our case. The corresponding classical Yang-Baxter relations for the 
normalised monodromy matrix take the form 

with 

E, , (x ,  A )  = exp(iAa,x)6,,. 

Then, we have 
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5. Conclusions 

We have studied the non-linear N-wave resonance interaction system with both boson 
and  fermion fields in the framework of the quantum inverse scattering method. Our 
model may be viewed as a direct generalisation of that proposed by Ohkuma and  
Wadati [ 5 ] .  In  fact, if we regard the fields wlo, . . . , w , - ~ , ~ ,  we.,+, , . . . , w,,, as fermions 
for a fixed a, and note that the exchange between w,, and w ~ + ~ - , . ~ + ~ - ,  does not affect 
the physics of the system, then N / 2  ( ( N +  1 ) / 2 )  different choices of statistics are only 
independent for even (odd)  N, respectively. Thus, there are three different choices in 
the three-wave interaction model. 

We have determined the energy spectrum of the quantum Hamiltonian for the 
model, and  analysed the existence of the quantum bound states. In the classical limit, 
we have presented the classical Yang-Baxter relations in the graded sense and examined 
the quasiclassical correspondence previously found by Izergin and Korepin [ 121. We 
wish that our formulation may also be useful in other completely integrable systems. 
A possible candidate is a generalised non-linear Schrodinger model associated with 
the superalgebra osp( m, 2 n ) ,  which may be considered as a reduction of the system ( 1 ) .  
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Appendix. Derivation of  the Lax pair for system (1) 

The traditional basis for applying the inverse scattering method is to represent the 
equations of motion of the system in the Lax form: 



4862 Hum-Qiang Zhou, J i m  Zhang and Lin Jie Jiang 

where 9 and Ju are N x N matrices depending on the spectral parameter A and the 
dynamical variables. The compatibility condition of ( A l )  

(A2) 

should be consistent with the equations of motion of the system. In our case, we assume 

(A3) 

2, - Ay + [ 2, "H ] = 0 

T ( x ,  A = i~ C ale// + C P/m(X)elm 
/ / m  

A(x,A)=-iA C b/,neim+C qim(X)elm. 
/ m  Im 

Substituting (A3) into (A2), we have 

Obviously, the coefficients in the same powers of A in the above equation must be 
zero. Therefore we have 

and 

From this we conclude 

b/m b$/m 

q l m  = - U / m P / m  

Here we have used the notation 

b/ - bm 
a/ - a m  

U / m  = -. 

Now choosing 

where 
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and substituting (A9) into (A8),  we have 

i < m  
l = m  
I > m  

and 

4863 

(A10) 

m-1 ( l n / i n m W i , W n m  + I / n l n m W / n W n m  
P l m )  ’.. = - ( - 1 )  

c n = 1  m = / + l  

( A l l )  ) 
N 

+ C l / n l m n W / n W i n  . 
n = m + l  

Comparing the above equation with the equations of motion, we obtain 

It must be noticed that there are always appropriate choices to guarantee the reality 
of the coupling constants E i j k .  
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